3-D object segmentation using ant colonies

نویسندگان

  • Piergiorgio Cerello
  • Sorin Cristian Cheran
  • Stefano Bagnasco
  • Roberto Bellotti
  • Lourdes Bolanos
  • Ezio Catanzariti
  • Giorgio De Nunzio
  • Maria Evelina Fantacci
  • Elisa Fiorina
  • Gianfranco Gargano
  • Gianluca Gemme
  • Ernesto Lopez Torres
  • Giovanni Luca Masala
  • Cristiana Peroni
  • Matteo Santoro
چکیده

3-D object segmentation is an important and challenging topic in computer vision that could be tackled with artificial life models. A Channeler Ant Model (CAM), based on the natural ant capabilities of dealing with 3-D environments through self-organization and emergent behaviours, is proposed. Ant colonies, defined in terms of moving, pheromone laying, reproduction, death and deviating behaviours rules, is able to segment artificially generated objects of different shape, intensity, background. The model depends on few parameters and provides an elegant solution for the segmentation of 3-D structures in noisy environments with unknown range of image intensities: even when there is a partial overlap between the intensity and noise range, it provides a complete segmentation with negligible contamination (i.e., fraction of segmented voxels that do not belong to the object). The CAM is already in use for the automated detection of nodules in lung Computed Tomographies. & 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ant Colonies For MRF-Based Image Segmentation

Résumé: This paper presents HACSEG, a new ant algorithm for the image segmentation based on the Markov Random Field (MRF) and a modified version of the Ant Colony System algorithm coupled with a local search. HACSEG algorithm differs from other ant algorithms proposed for image segmentation, in the way that each artificial ant is associated with a particular partition that is modified using phe...

متن کامل

Active Contour Tracking of Moving Objects Using Edge Flows and Ant Colony Optimization in Video Sequences

Object segmentation and tracking are important techniques in video applications. In this paper, we present a novel system for active contour tracking of moving objects in video sequences. Our method includes preprocessing to identify an initial object contour, and object contour segmentation to refine the contour of the moving object. The edge flows and ant colony optimization are incorporated ...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

On Edge Detection of Images Using Ant Colony Optimization and Fisher Ratio

Edge detection is one of the important parts of image processing. It is essentially involved in the pre-processing stage of image analysis and computer vision. It generally detects the contour of an image and thus provides important details about an image. So, it reduces the content to process for the high-level processing tasks like object recognition and image segmentation. The most important...

متن کامل

MR Brain Image Segmentation based on Markov Random Field with the Application of ACO

Magnetic resonance (MR) medical image segmentation plays an increasingly important role in computer-aided detection and diagnosis (CAD) of abnormalities. MRI segmentation manually is time consuming and consumes valuable human resources. Hence a great deal of efforts has been made to automate this process. Markov Random Field (MRF) has been one of the most active research areas of MRI brain segm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2010